Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Serieuze discussies over het menselijk denken en gedrag

Moderator: Moderators

Gebruikersavatar
axxyanus
Moderator
Berichten: 12291
Lid geworden op: 08 nov 2008 21:23

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door axxyanus »

Ammonius schreef: 17 sep 2024 10:25
axxyanus schreef: 14 sep 2024 21:47
Ammonius schreef: 14 sep 2024 17:27 Helaas, je hebt in je poging tot wiskundige ondersteuning opnieuw het inductieprincipe voor-ondersteld. Je gaat er in je redenering namelijk van uit, dat de kans op stabiliteit die je voor de resultaten uit het verleden hebt berekend iets zegt over de kans op stabiliteit voor een toekomstige gebeurtenis.
In dit specifiek voorbeeld ja maar dat is niet nodig.
Waarom is dat niet nodig?
Omdat het niet nodig is om exacte kanswaarden te kunnen berekenen. Het is voldoende als je kan aantonen dat de kans op stabiliteit stijgt.
Ammonius schreef: 17 sep 2024 10:25
axxyanus schreef: 14 sep 2024 21:47
Ammonius schreef: 14 sep 2024 17:27 Als je ervan uitgaat dat die kansen gelijk zijn, maak je gebruik van het inductieprincipe. Als je daar niet van uitgaat, kun je niets meer zeggen over hoe groot de kans op stabiliteit in de toekomst is.
Dat laatste klopt niet helemaal. want wat je wel kan bewijzen is dat de kans op stabiliteit toeneemt met elke dag dat de bal niet van kleur verandert.

En dus naar mate het aantal dagen dat die bal de zelfde kleur gebleven is, mag je vertrouwen in de kleurstabiliteit stijgen .
Je kunt de kans op stabiliteit berekenen voor de resultaten uit het verleden. Dat daaruit volgt dat die stabiliteit in de toekomst zal blijven, is gebaseerd op het inductieprincipe.
Zoals je het nu verwoordt lijk je te zeggen dat er geen garantie is dat de bal kleurstabiel is. Dat klopt. Maar ik dacht dat het niet om een garantie ging maar om aannemelijkheid. En dan kan je wiskundig bewijzen dat de kans op kleurstabiliteit groeit met elke dag dat de bal niet van kleur veranderde en dat het dus na een tijd aannemelijk is om uit te gaan van de kleurstabiliteit van die bal.

Met elke dag dat de bal niet van kleur veranderde, is het een veiligere weddenschap om er van uit te gaan dat die bal ook de volgende dag niet van kleur zal veranderen.

Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Al mijn hier gebrachte meningen, zijn voor herziening vatbaar.
De illusie het verleden te begrijpen, voedt de illusie dat de toekomst voorspelbaar en beheersbaar is -- naar Daniël Kahneman
Gebruikersavatar
Ammonius
Berichten: 49
Lid geworden op: 23 jul 2024 15:08

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door Ammonius »

axxyanus schreef: 17 sep 2024 17:53 Zoals je het nu verwoordt lijk je te zeggen dat er geen garantie is dat de bal kleurstabiel is. Dat klopt. Maar ik dacht dat het niet om een garantie ging maar om aannemelijkheid. En dan kan je wiskundig bewijzen dat de kans op kleurstabiliteit groeit met elke dag dat de bal niet van kleur veranderde en dat het dus na een tijd aannemelijk is om uit te gaan van de kleurstabiliteit van die bal.

Met elke dag dat de bal niet van kleur veranderde, is het een veiligere weddenschap om er van uit te gaan dat die bal ook de volgende dag niet van kleur zal veranderen.

Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Het haalt allemaal niets uit. Het feit dat er in het verleden stabiliteit was, maakt het zelfs niet aannemelijk dat er in de toekomst ook stabiliteit zal zijn, tenzij je het principe van inductie voor-onderstelt. Je hebt kunnen laten zien dat de resultaten van t-5, t-4, t-3, t-2 en t-1 stabiliteit over het bereid (-5, -1) aannemelijk waren, maar als je beweert dat die resultaten iets zeggen over eventuele stabiliteit op t+1 moet je voor-onderstellen dat er een bepaalde overeenkomst is tussen t-5 t/m t-1 enerzijds en t+1 anderzijds die maakt dat je de conclusie kunt extrapoleren. Die vooronderstelling van een bepaalde overeenkomst heet het inductieprincipe.
"Stoute stellingen [zijn geen] bewijzen. Traagheid en angst doen velen der onzen zonder onderzoek aannemen; traagheid en onberedeneerde moed doen de uwe alles verwerpen. Ik hoop, dat wij eens allen tot de kennis van het ware zullen komen, en onderwijl wel doen."

Sara Burgerhart
Gebruikersavatar
axxyanus
Moderator
Berichten: 12291
Lid geworden op: 08 nov 2008 21:23

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door axxyanus »

Ammonius schreef: 17 sep 2024 21:01
axxyanus schreef: 17 sep 2024 17:53 Zoals je het nu verwoordt lijk je te zeggen dat er geen garantie is dat de bal kleurstabiel is. Dat klopt. Maar ik dacht dat het niet om een garantie ging maar om aannemelijkheid. En dan kan je wiskundig bewijzen dat de kans op kleurstabiliteit groeit met elke dag dat de bal niet van kleur veranderde en dat het dus na een tijd aannemelijk is om uit te gaan van de kleurstabiliteit van die bal.

Met elke dag dat de bal niet van kleur veranderde, is het een veiligere weddenschap om er van uit te gaan dat die bal ook de volgende dag niet van kleur zal veranderen.

Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Het haalt allemaal niets uit. Het feit dat er in het verleden stabiliteit was, maakt het zelfs niet aannemelijk dat er in de toekomst ook stabiliteit zal zijn, tenzij je het principe van inductie voor-onderstelt.
Neen, ik veronderstel dat niet. Ik sluit dat enkel niet uit. De rest is wiskunde. Als je toelaat dat stabiliteit mogelijk is, dan wijst geobserveerde aanhoudende stabiliteit in het verleden op een toegenomen kans op stabiliteit in de toekomst. Om de heel eenvoudige reden dat instabiliteit zich op een bepaald moment moet manifesteren en daardoor de stabiliteit weerlegt. Daarom maakt blijvende stabiliteit toekomstige stabiliteit meer aannemelijk. Als een bepaalde observatie een bepaald besluit aannemelijker maakt dan maakt de omgekeerde observatie het tegenover gestelde besluit aannemelijker.
Ammonius schreef: 17 sep 2024 21:01 Je hebt kunnen laten zien dat de resultaten van t-5, t-4, t-3, t-2 en t-1 stabiliteit over het bereid (-5, -1) aannemelijk waren, maar als je beweert dat die resultaten iets zeggen over eventuele stabiliteit op t+1 moet je voor-onderstellen dat er een bepaalde overeenkomst is tussen t-5 t/m t-1 enerzijds en t+1 anderzijds die maakt dat je de conclusie kunt extrapoleren. Die vooronderstelling van een bepaalde overeenkomst heet het inductieprincipe.
Neen, je moet enkel niet uitsluiten dat er een bepaalde overeenkomst is. Daarna kan je wiskundig bewijzen, dat die stabiele optie steeds waarschijnlijker wordt.
Al mijn hier gebrachte meningen, zijn voor herziening vatbaar.
De illusie het verleden te begrijpen, voedt de illusie dat de toekomst voorspelbaar en beheersbaar is -- naar Daniël Kahneman
Gebruikersavatar
TIBERIUS CLAUDIUS
Superposter
Berichten: 8365
Lid geworden op: 02 mei 2017 18:24
Locatie: CAPRI

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door TIBERIUS CLAUDIUS »

axxyanus schreef: 17 sep 2024 17:53 Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Daar ben ik het niet mee eens.

Wel ben ik benieuwd of @Ammonius dat ook is en om welke rede.
En als er nu meer keizers zijn geweest dan maanden, wat dan, geachte senatoren?
Gebruikersavatar
axxyanus
Moderator
Berichten: 12291
Lid geworden op: 08 nov 2008 21:23

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door axxyanus »

TIBERIUS CLAUDIUS schreef: 18 sep 2024 09:11
axxyanus schreef: 17 sep 2024 17:53 Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Daar ben ik het niet mee eens.

Wel ben ik benieuwd of @Ammonius dat ook is en om welke rede.
Waar ben je het specifiek niet mee eens? Dat dit een bruikbare illustratie/analogie is? Of dat als je begint met een mengeling van stabiele en instabiele zaken en je de instabiele zaken verwijdert naargelang ze die instabiliteit vertonen, de verhouding van stabiele t.o.v de instabiele vergroot. Of nog iets anders?
Al mijn hier gebrachte meningen, zijn voor herziening vatbaar.
De illusie het verleden te begrijpen, voedt de illusie dat de toekomst voorspelbaar en beheersbaar is -- naar Daniël Kahneman
Gebruikersavatar
TIBERIUS CLAUDIUS
Superposter
Berichten: 8365
Lid geworden op: 02 mei 2017 18:24
Locatie: CAPRI

Re: Ipv direct bewijs te eisen, indicaties kunnen waarderen omdat dat duidelijk verschilt van helemaal geen indicaties

Bericht door TIBERIUS CLAUDIUS »

axxyanus schreef: 18 sep 2024 12:39
TIBERIUS CLAUDIUS schreef: 18 sep 2024 09:11
axxyanus schreef: 17 sep 2024 17:53 Je kan het als volgt zien. Je begint met een grote verzameling van ballen, waarvan er sommige kleurstabiel zijn. Je hebt alleen geen idee welke. Maar af en toe zal een bal die niet kleurstabiel is van kleur veranderen en die kan je dus verwijderen. Dus het aantal kleurstabiele ballen wordt met de tijd relatief groter.
Daar ben ik het niet mee eens.

Wel ben ik benieuwd of @Ammonius dat ook is en om welke rede.
Waar ben je het specifiek niet mee eens? Dat dit een bruikbare illustratie/analogie is? Of dat als je begint met een mengeling van stabiele en instabiele zaken en je de instabiele zaken verwijdert naargelang ze die instabiliteit vertonen, de verhouding van stabiele t.o.v het totaal vergroot. Of nog iets anders?
Denk nu eens na en denk aan de vergelijkinkje dX/dt = cX

Dit staat voor een hele familie die zich niet zo gedragen als jij onderstelt.

PS.
Ik laat liever de bal bij @Ammonius liggen. :mrgreen:
En als er nu meer keizers zijn geweest dan maanden, wat dan, geachte senatoren?
Plaats reactie